{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# CEMS Global ECMWF Fire Forecasting (GEFF) - Fire Weather Index"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"```{hint} \n",
"Execute the notebook on the training platform >>\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {
"Collapsed": "false"
},
"source": [
"The [European Centre for Medium-Range Weather Forecasts (ECMWF)](https://www.ecmwf.int/) produces daily fire danger forecasts and reanalysis products for the [Copernicus Emergency Management Services (CEMS)](https://emergency.copernicus.eu/). The modelling system that generates the fire data products is called [Global ECMWF Fire Forecast (GEFF)](https://git.ecmwf.int//projects/CEMSF/repos/geff/browse) and it is based on the Canadian Fire Weather index as well as the US and Australian fire danger systems. \n",
"\n",
"In most European countries, the core of the wildfire season starts on 1st of March and ends on 31st of October.\n",
"The EFFIS network adopts the Canadian Forest Fire Weather Index (FWI) System as the method to assess the fire danger level in a harmonized way throughout Europe.\n",
" \n",
"**European** Fire Danger Classes (FWI ranges, upper bound excluded):\n",
" - Very low = 0 - 5.2\n",
" - Low = 5.2 - 11.2 \n",
" - Moderate = 11.2 - 21.3 \n",
" - High = 21.3 - 38.0 \n",
" - Very high = 38.0 - 50.0 \n",
" - Extreme > 50.0\n",
"\n",
"This notebook shows the structure of CEMS GEFF `Fire Weather Index` data and what information of the data files can be used in order to load, browse and visualize the data. \n",
"\n",
"The events featured in this notebook are the wildfires in Italy and Greece in summer 2021. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"``` {admonition} Basic Facts\n",
"**Spatial resolution**: `~10km`
\n",
"**Spatial coverage**: `Europe`
\n",
"**Time steps**: `Daily, seasonal and annual`
\n",
"**Data availability**: `since 1970`\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {
"tags": []
},
"source": [
"``` {admonition} How to access the data\n",
"The fire weather index data can be ordered via the Copernicus [Climate Data Store](https://doi.org/10.24381/cds.ca755de7) and are distributed in `NetCDF` format. We recommend using the corrected Version 2.0 of the data.\n",
"\n",
"You need to [register for an account](https://cds.climate.copernicus.eu/user/register) before being able to download data.\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"
<xarray.Dataset>\n", "Dimensions: (time: 1, longitude: 1440, latitude: 721)\n", "Coordinates:\n", " * time (time) datetime64[ns] 2021-08-05T12:00:00\n", " * longitude (longitude) float32 0.0 0.25 0.5 0.75 ... 359.0 359.2 359.5 359.8\n", " * latitude (latitude) float32 90.0 89.75 89.5 89.25 ... -89.5 -89.75 -90.0\n", "Data variables:\n", " fwi (time, latitude, longitude) float32 ...\n", "Attributes:\n", " CDI: Climate Data Interface version 1.9.8 (https://...\n", " Conventions: CF-1.6\n", " history: Fri Oct 29 01:05:30 2021: cdo -f nc4 -chname,f...\n", " institution: European Centre for Medium-Range Weather Forec...\n", " cdo_openmp_thread_number: 8\n", " CDO: Climate Data Operators version 1.9.8 (https://...
array(['2021-08-05T12:00:00.000000000'], dtype='datetime64[ns]')
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02,\n", " 3.5975e+02], dtype=float32)
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ], dtype=float32)
[1038240 values with dtype=float32]
<xarray.DataArray 'fwi' (time: 1, latitude: 721, longitude: 1440)>\n", "[1038240 values with dtype=float32]\n", "Coordinates:\n", " * time (time) datetime64[ns] 2021-08-05T12:00:00\n", " * longitude (longitude) float32 0.0 0.25 0.5 0.75 ... 359.0 359.2 359.5 359.8\n", " * latitude (latitude) float32 90.0 89.75 89.5 89.25 ... -89.5 -89.75 -90.0\n", "Attributes:\n", " standard_name: forest_fire_weather_index\n", " long_name: Forest fire weather index\n", " units: Numeric\n", " param: 5.4.2\n", " institution: ECMWF
[1038240 values with dtype=float32]
array(['2021-08-05T12:00:00.000000000'], dtype='datetime64[ns]')
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02,\n", " 3.5975e+02], dtype=float32)
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ], dtype=float32)
<xarray.DataArray 'fwi' (time: 1, latitude: 721, longitude: 1440)>\n", "[1038240 values with dtype=float32]\n", "Coordinates:\n", " * time (time) datetime64[ns] 2021-08-05T12:00:00\n", " * longitude (longitude) float32 -180.0 -179.8 -179.5 ... 179.2 179.5 179.8\n", " * latitude (latitude) float32 90.0 89.75 89.5 89.25 ... -89.5 -89.75 -90.0\n", "Attributes:\n", " standard_name: forest_fire_weather_index\n", " long_name: Forest fire weather index\n", " units: Numeric\n", " param: 5.4.2\n", " institution: ECMWF
[1038240 values with dtype=float32]
array(['2021-08-05T12:00:00.000000000'], dtype='datetime64[ns]')
array([-180. , -179.75, -179.5 , ..., 179.25, 179.5 , 179.75],\n", " dtype=float32)
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ], dtype=float32)
<xarray.DataArray 'fwi' (time: 1, latitude: 39, longitude: 79)>\n", "array([[[10.799805 , 17.420248 , 24.36914 , ..., 20.979492 ,\n", " 17.09733 , 16.54248 ],\n", " [11.998047 , 13.001953 , 16.319662 , ..., nan,\n", " nan, nan],\n", " [ 0.6582031, 1.8463541, 5.5240884, ..., nan,\n", " nan, nan],\n", " ...,\n", " [56.391113 , 60.751465 , 63.10669 , ..., nan,\n", " nan, nan],\n", " [58.073242 , 59.086914 , 62.18506 , ..., nan,\n", " nan, nan],\n", " [57.010254 , 58.53308 , 61.454346 , ..., nan,\n", " nan, nan]]], dtype=float32)\n", "Coordinates:\n", " * time (time) datetime64[ns] 2021-08-05T12:00:00\n", " * longitude (longitude) float32 10.25 10.5 10.75 11.0 ... 29.25 29.5 29.75\n", " * latitude (latitude) float32 44.75 44.5 44.25 44.0 ... 35.75 35.5 35.25\n", "Attributes:\n", " standard_name: forest_fire_weather_index\n", " long_name: Forest fire weather index\n", " units: Numeric\n", " param: 5.4.2\n", " institution: ECMWF
array([[[10.799805 , 17.420248 , 24.36914 , ..., 20.979492 ,\n", " 17.09733 , 16.54248 ],\n", " [11.998047 , 13.001953 , 16.319662 , ..., nan,\n", " nan, nan],\n", " [ 0.6582031, 1.8463541, 5.5240884, ..., nan,\n", " nan, nan],\n", " ...,\n", " [56.391113 , 60.751465 , 63.10669 , ..., nan,\n", " nan, nan],\n", " [58.073242 , 59.086914 , 62.18506 , ..., nan,\n", " nan, nan],\n", " [57.010254 , 58.53308 , 61.454346 , ..., nan,\n", " nan, nan]]], dtype=float32)
array(['2021-08-05T12:00:00.000000000'], dtype='datetime64[ns]')
array([10.25, 10.5 , 10.75, 11. , 11.25, 11.5 , 11.75, 12. , 12.25, 12.5 ,\n", " 12.75, 13. , 13.25, 13.5 , 13.75, 14. , 14.25, 14.5 , 14.75, 15. ,\n", " 15.25, 15.5 , 15.75, 16. , 16.25, 16.5 , 16.75, 17. , 17.25, 17.5 ,\n", " 17.75, 18. , 18.25, 18.5 , 18.75, 19. , 19.25, 19.5 , 19.75, 20. ,\n", " 20.25, 20.5 , 20.75, 21. , 21.25, 21.5 , 21.75, 22. , 22.25, 22.5 ,\n", " 22.75, 23. , 23.25, 23.5 , 23.75, 24. , 24.25, 24.5 , 24.75, 25. ,\n", " 25.25, 25.5 , 25.75, 26. , 26.25, 26.5 , 26.75, 27. , 27.25, 27.5 ,\n", " 27.75, 28. , 28.25, 28.5 , 28.75, 29. , 29.25, 29.5 , 29.75],\n", " dtype=float32)
array([44.75, 44.5 , 44.25, 44. , 43.75, 43.5 , 43.25, 43. , 42.75, 42.5 ,\n", " 42.25, 42. , 41.75, 41.5 , 41.25, 41. , 40.75, 40.5 , 40.25, 40. ,\n", " 39.75, 39.5 , 39.25, 39. , 38.75, 38.5 , 38.25, 38. , 37.75, 37.5 ,\n", " 37.25, 37. , 36.75, 36.5 , 36.25, 36. , 35.75, 35.5 , 35.25],\n", " dtype=float32)